Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0811720140180030211
Korean Journal of Physiology & Pharmacology
2014 Volume.18 No. 3 p.211 ~ p.216
Effect of Exercise Intensity on Unfolded Protein Response in Skeletal Muscle of Rat
Kim Ki-Hoon

Kim Yun-Hye
Lee Sung-Hye
Jeon Man-Joong
Park So-Young
Doh Kyung-Oh
Abstract
Endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and mitochondrial biogenesis were assessed following varying intensities of exercise training. The animals were randomly assigned to receive either low- (LIT, n=7) or high intensity training (HIT, n=7), or were assigned to a control group (n=7). Over 5 weeks, the animals in the LIT were exercised on a treadmill with a 10¡Æ incline for 60 min at a speed of 20 m/min group, and in the HIT group at a speed of 34 m/min for 5 days a week. No statistically significant differences were found in the body weight, plasma triglyceride, and total cholesterol levels across the three groups, but fasting glucose and insulin levels were significantly lower in the exercise-trained groups. Additionally, no statistically significant differences were observed in the levels of PERK phosphorylation in skeletal muscles between the three groups. However, compared to the control and LIT groups, the level of BiP was lower in the HIT group. Compared to the control group, the levels of ATF4 in skeletal muscles and CHOP were significantly lower in the HIT group. The HIT group also showed increased PGC-1¥á mRNA expression in comparison with the control group. Furthermore, both of the trained groups showed higher levels of mitochondrial UCP3 than the control group. In summary, we found that a 5-week high-intensity exercise training routine resulted in increased mitochondrial biogenesis and decreased ER stress and apoptotic signaling in the skeletal muscle tissue of rats.
KEYWORD
ER stress, Exercise, Mitochondria, Skeletal muscle, Unfolded protein responses
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed